Syntax
d = eigs(A)
d = eigs(A,B)
d = eigs(A,k)
d = eigs(A,B,k)
d = eigs(A,k,sigma
)
d = eigs(A,B,k,sigma
)
d = eigs(A,k,sigma
,options)
d = eigs(A,B,k,sigma
,options)
d = eigs(Afun,n)
d = eigs(Afun,n,B)
d = eigs(Afun,n,k)
d = eigs(Afun,n,B,k)
d = eigs(Afun,n,k,sigma
)
d = eigs(Afun,n,B,k,sigma
)
d = eigs(Afun,n,k,sigma
,options)
d = eigs(Afun,n,B,k,sigma
,options)
d = eigs(Afun,n,k,sigma
,options,p1,p2...)
d = eigs(Afun,n,B,k,sigma
,options,p1,p2...)
[V,D] = eigs(A,...)
[V,D] = eigs(Afun,n,...)
[V,D,flag] = eigs(A,...)
[V,D,flag] = eigs(Afun,n,...)
Description
d = eigs(A)
returns a vector of A
's six largest magnitude eigenvalues.
[V,D] = eigs(A)
returns a diagonal matrix D
of A
's six largest magnitude eigenvalues and a matrix V
whose columns are the corresponding eigenvectors.
[V,D,flag] = eigs(A)
also returns a convergence flag. If flag
is 0
then all the eigenvalues converged; otherwise not all converged.
eigs(A,B)
solves the generalized eigenvalue problem A*V == B*V*D
. B
must be symmetric (or Hermitian) positive definite and the same size as A
. eigs(A,[],...)
indicates the standard eigenvalue problem A*V == V*D
.
eigs(A,k) and eigs(A,B,k)
return the k
largest magnitude eigenvalues.
eigs(A,k,
return sigma
) and eigs(A,B,k,sigma
) k
eigenvalues based on sigma
, which can take any of the following values:
eigs(A,K,
specify an options structure. Default values are shown in brackets (sigma
,opts) and eigs(A,B,k,sigma
,opts) {}
).
eigs(Afun,n,...)
accepts the function Afun
instead of the matrix A
. y = Afun(x)
should return:
n
is the size of A
. The matrix A
, A-
sigma
*I
or A-
sigma
*B
represented by Afun
is assumed to be real and nonsymmetric unless specified otherwise by opts.isreal
and opts.issym
. In all the eigs
syntaxes, eigs(A,...)
can be replaced by eigs(Afun,n,...)
.
eigs(Afun,n,k,
provide for additional arguments which are passed to sigma
,opts,p1,p2,...) and eigs(Afun,n,B,k,sigma
,opts,p1,p2,...) Afun(x,p1,p2,...)
.
Remarks
d = eigs(A,k)
is not a substitute for
but is most appropriate for large sparse matrices. If the problem fits into memory, it may be quicker to use eig(full(A))
.
Algorithm
eigs
provides the reverse communication required by the Fortran library ARPACK, namely the routines DSAUPD
, DSEUPD
, DNAUPD
, DNEUPD
, ZNAUPD
, and ZNEUPD
.
Examples
Example 1: This example shows the use of function handles.
Equivalently, if dnRk
is the following one-line function:
then pass dnRk
's additional arguments, 'C'
and 15
, to eigs
.
Example 2: west0479
is a real 479-by-479 sparse matrix with both real and pairs of complex conjugate eigenvalues. eig
computes all 479 eigenvalues. eigs
easily picks out the largest magnitude eigenvalues.
This plot shows the 8 largest magnitude eigenvalues of west0479
as computed by eig
and eigs
.
load west0479
d = eig(full(west0479))
dlm = eigs(west0479,8)
[dum,ind] = sort(abs(d));
plot(dlm,'k+')
hold on
plot(d(ind(end-7:end)),'ks')
hold off
legend('eigs(west0479,8)','eig(full(west0479))')
Example 3: A = delsq(numgrid('C',30))
is a symmetric positive definite matrix of size 632 with eigenvalues reasonably well-distributed in the interval (0 8), but with 18 eigenvalues repeated at 4. The eig
function computes all 632 eigenvalues. It computes and plots the six largest and smallest magnitude eigenvalues of A
successfully with:
A = delsq(numgrid('C',30));
d = eig(full(A));
[dum,ind] = sort(abs(d));
dlm = eigs(A);
dsm = eigs(A,6,'sm');
subplot(2,1,1)
plot(dlm,'k+')
hold on
plot(d(ind(end:-1:end-5)),'ks')
hold off
legend('eigs(A)','eig(full(A))',3)
set(gca,'XLim',[0.5 6.5])
subplot(2,1,2)
plot(dsm,'k+')
hold on
plot(d(ind(1:6)),'ks')
hold off
legend('eigs(A,6,''sm'')','eig(full(A))',2)
set(gca,'XLim',[0.5 6.5])
However, the repeated eigenvalue at 4 must be handled more carefully. The call eigs(A,18,4.0)
to compute 18 eigenvalues near 4.0 tries to find eigenvalues of A - 4.0*I
. This involves divisions of the form 1/(lambda - 4.0)
, where lambda
is an estimate of an eigenvalue of A
. As lambda
gets closer to 4.0, eigs
fails. We must use sigma
near but not equal to 4 to find those 18 eigenvalues.
The plot shows the 20 eigenvalues closest to 4 that were computed by eig
, along with the 18 eigenvalues closest to 4 - 1e-6
that were computed by eigs
.
No comments:
Post a Comment