BiConjugate Gradients Stabilized method
Syntax
x = bicgstab(A,b)
bicgstab(A,b,tol)
bicgstab(A,b,tol,maxit)
bicgstab(A,b,tol,maxit,M)
bicgstab(A,b,tol,maxit,M1,M2)
bicgstab(A,b,tol,maxit,M1,M2,x0)
bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = bicgstab(A,b,...)
[x,flag,relres] = bicgstab(A,b,...)
[x,flag,relres,iter] = bicgstab(A,b,...)
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)
Description
x = bicgstab(A,b)
attempts to solve the system of linear equations A*x=b
for x
. The n
-by-n
coefficient matrix A
must be square and should be large and sparse. The column vector b
must have length n
. A
can be a function afun
such that afun(x)
returns A*x
.
If bicgstab
converges, a message to that effect is displayed. If bicgstab
fails to converge after the maximum number of iterations or halts for any reason, a warning message is printed displaying the relative residual norm(b-A*x)/norm(b)
and the iteration number at which the method stopped or failed.
bicgstab(A,b,tol)
specifies the tolerance of the method. If tol
is []
, then bicgstab
uses the default, 1e-6
.
bicgstab(A,b,tol,maxit)
specifies the maximum number of iterations. If maxit
is []
, then bicgstab
uses the default, min(n,20)
.
bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2)
use preconditioner M
or M = M1*M2
and effectively solve the system inv(M)*A*x = inv(M)*b
for x
. If M
is []
then bicgstab
applies no preconditioner. M
can be a function that
returns M\x
.
bicgstab(A,b,tol,maxit,M1,M2,x0)
specifies the initial guess. If x0
is []
, then bicgstab
uses the default, an all zero vector.
bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
passes parameters p1,p2,...
to functions afun(x,p1,p2,...)
, m1fun(x,p1,p2,...)
, and m2fun(x,p1,p2,...)
.
[x,flag] = bicgstab(A,b,...)
also returns a convergence flag.
Whenever flag
is not 0
, the solution x
returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the flag
output is specified.
[x,flag,relres] = bicgstab(A,b,...)
also returns the relative residual norm(b-A*x)/norm(b)
. If flag
is 0
, relres <= tol
.
[x,flag,relres,iter] = bicgstab(A,b,...)
also returns the iteration number at which x
was computed, where 0 <= iter <= maxit
. iter
can be an integer +
0.5, indicating convergence half way through an iteration.
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)
also returns a vector of the residual norms at each half iteration, including norm(b-A*x0)
.
Example
Example 1. This example first solves Ax = b
by providing A
and the preconditioner M1
directly as arguments. It then solves the same system using functions that return A
and the preconditioner.
A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);
x = bicgstab(A,b,tol,maxit,M1,[],[]);
Alternatively, use this matrix-vector product function
and this preconditioner backsolve function
Note that both afun
and mfun
must accept bicgstab
's extra input n=21
.
Example 2. This examples demonstrates the use of a preconditioner. Start with A = west0479
, a real 479-by-479 sparse matrix, and define b
so that the true solution is a vector of all ones.
flag
is 1
because bicgstab
does not converge to the default tolerance 1e-6
within the default 20 iterations.
flag1
is 2
because the upper triangular U1
has a zero on its diagonal. This causes bicgstab
to fail in the first iteration when it tries to solve a system such as U1*y = r
using backslash.
flag2
is 0
because bicgstab
converges to the tolerance of 3.1757e-016
(the value of relres2
) at the sixth iteration (the value of iter2
) when preconditioned by the incomplete LU factorization with a drop tolerance of 1e-6
. resvec2(1) = norm(b)
and resvec2(13) = norm(b-A*x2)
. You can follow the progress of bicgstab
by plotting the relative residuals at the halfway point and end of each iteration starting from the initial estimate (iterate number 0).
semilogy(0:0.5:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')
bin2decBinary to decimal number conversion
Syntax
bin2dec(
binarystr
)
Description
bin2dec(
interprets the binary string binarystr
) binarystr
and returns the equivalent decimal number.
Examples
Syntax
Description
returns the bit-wise AND of two nonnegative integer arguments C = bitand(A,B)
A
and B
. To ensure the operands are integers, use the ceil
, fix
, floor
, and round
functions.
Examples
The five-bit binary representations of the integers 13 and 27 are 01101 and 11011, respectively. Performing a bit-wise AND on these numbers yields 01001, or 9.
No comments:
Post a Comment